图 3. 电流翻转的八端器件图 (左上),(Bi0.25Sb0.75)2Te3 / α - Fe2O3 中电流诱导的霍尔电阻变化 (下)。Pt / α - Fe2O3 和 (Bi0.25Sb0.75)2Te3 / α - Fe2O3 中温度依赖的临界翻转电流密度 (右上)。 这一工作,打开了拓扑绝缘体 (拓扑表面态) / 反铁磁异质结的大门,相关结果于 2022 年 9 月 5 日在线发表于《自然·电子学》(Nature
Electronics, https://www.nature.com/articles/s41928-022-00825-8),并应邀同期发表研究简报 (Research Briefing)。论文通讯作者是清华大学宋成教授,论文共同第一作者为清华大学博士生陈贤哲 (现为加州大学伯克利分校博士后)、白桦和上海科技大学博士生季育琛。研究团队学术带头人、清华大学潘峰教授和上海科技大学寇煦丰教授团队 (拓扑绝缘体的外延制备及表征),对这一研究工作做出重要贡献。北京工业大学韩晓东教授和李昂教授为该研究工作提供电镜表征。 参考文献: [1] Mellnik, A. R. et
al. Spin-transfer torque generated by a topological insulator. Nature511,
449–451 (2014).[2] Fan, Y. et al.
Magnetization switching through giant spin–orbit torque in a magnetically doped
topological insulator heterostructure. Nat. Mater.13, 699–704
(2014).[3] Yasuda, Y. et al.
Large unidirectional magnetoresistance in a magnetic topological insulator. Phys.
Rev. Lett.117 127202 (2016).[4] Hou, D. et al. Tunable sign change of spin Hall
magnetoresistance in Pt/NiO/YIG structures. Phys. Rev. Lett.118, 147202
(2017).[5] Chen, X. Z. et al. Antidamping-torque-induced switching in
biaxial antiferromagnetic insulators. Phys. Rev. Lett.120, 207204
(2018).[6] Chen, X. Z. et al. Electric field control of Néel spin-orbit
torque in an antiferromagnet. Nat. Mater.18, 931–935 (2019).[7]Chen, X. Z. et al. Observation of
the antiferromagnetic spin Hall effect. Nat. Mater.20, 800–804 (2021).[8] Higo, T. et al. Perpendicular full
switching of chiral antiferromagnetic order by current. Nature607,
474–479 (2022).[9] Zhang, P. et
al. Control of Néel vector with spin-orbit torques in an antiferromagnetic
insulator with tilted easy plane. Phys. Rev. Lett.129, 017203
(2022).